Warming at the Third Pole – A New Record of Climate Change from Kashmir, Northwest Himalaya

The Wooster Tree Ring Lab collaborated on a publication describing the recent thermal history of the Lidder Valley, Northwest Himalaya. Dr. Santosh Shah, the lead author, is a multitalented paleoclimatologist at the Birbal Sahni Institute of Palaeosciences in Locknow, India. He and his colleagues led the study that appeared in Climate Dynamics and is titled: A winter temperature reconstruction for the Lidder Valley, Kashmir, Northwest Himalaya based on tree-rings of Pinus wallichiana. Here is the abstract from the study:

Abstract: A regional, 175 year long, tree-ring width chronology (spanning 1840–2014 C.E.) was developed for Pinus wallichiana A. B. Jacks. (Himalayan Blue pine) from the Lidder Valley, Kashmir, Northwest Himalaya. Simple and seasonal correlation analysis (SEASCORR) with monthly climate records demonstrates a significant direct positive relationship of tree growth with winter temperature. A linear regression model explains 64% of the total variance of the winter temperature and is used to reconstruct December–March temperatures back to 1855 C.E. The most noticeable feature of the reconstruction is a marked warming trend beginning in the late twentieth century and persisting through the present. This reconstruction was compared with instrumental records and other proxy based local and regional temperature reconstructions and generally agrees with the tree-ring records and is

https://woostergeologists.scotblogs.wooster.edu

Warming at the Third Pole, Northwest Kashmir and Tree Rings

The Wooster Tree Ring Lab collaborated on a publication describing the recent thermal history of the Lidder Valley, Northwest Himalaya. Dr. Santosh Shah, the lead author, is a multitalented paleoclimatologist at the Birbal Sahni Institute of Palaeosciences in Locknow, India. He and his colleagues led the study that appeared in Climate Dynamics and is titled: A winter temperature reconstruction for the Lidder Valley, Kashmir, Northwest Himalaya based on tree-rings of Pinus wallichiana. Here is the abstract from the study:

Abstract: A regional, 175 year long, tree-ring width chronology (spanning 1840–2014 C.E.) was developed for Pinus wallichiana A. B. Jacks. (Himalayan Blue pine) from the Lidder Valley, Kashmir, Northwest Himalaya. Simple and seasonal correlation analysis (SEASCORR) with monthly climate records demonstrates a significant direct positive relationship of tree growth with winter temperature. A linear regression model explains 64% of the total variance of the winter temperature and is used to reconstruct December–March temperatures back to 1855 C.E. The most noticeable feature of the reconstruction is a marked warming trend beginning in the late twentieth century and persisting through the present. This reconstruction was compared with instrumental records and other proxy based local and regional temperature reconstructions and generally agrees with the tree-ring records and is consistent with the marked loss of glacial ice over the last few decades. Spectral analysis reveals a periodicity likely associated with the Atlantic Multidecadal Oscillation and El Niño–Southern Oscillation. Spatial cor- relation patterns of sea surface temperatures with the observed and reconstructed winter temperatures are consistent with larger scale warming in the region.

Map showing the location of the study in the Lidder Valley in Kashmir, Northwest India.

The rivers of the Lidder Valley are fed by glaciers from the Himalaya, which are becoming increasingly impacted by climate change and population pressures. The people within the valley depends on the water from the rivers and managing the water in this rapidly warming region is an increasing challenge. The results in this work show the increasing pace of the recent warming (see figure below).

Temperature reconstructions (above) based on tree-rings for the Himalaya. The curve on the top is from the new publication. 

Dr. Shah is now working on using tree-rings to reconstruct river flow in the region. This is work that he presented last year at World Dendro in Bhutan and which we are are also collaborators. We are grateful to Dr . Shah for introducing us to climate change research in the Himalaya AND for his help to our former students of the Wooster Tree Ring Lab.

Jeff Gunderson,  who recently completed his masters thesis at The Ohio State University in Geography used tree-rings from the Peruvian Andes to reconstruct climate. Jeff collaborated with Dr. Shah who shared his computer code and guidance in calibrating his Peruvian tree-ring records.

Jeff Gunderson,  who recently completed his masters thesis at The Ohio State University in Geography used tree-rings from the Peruvian Andes to  to tell us about past temperature changes in another region of the world that depends, in large part, on the melting glaciers for water.  Jeff collaborated with Dr. Shah who shared his computer code and guidance in calibrating his tree-ring records.

.

 

WTRL is Involved in a New Study on Cosmic Events

The Wooster Tree Ring Lab is part of the international tree-ring community, that investigated the global extent and seasonal timing of the rapid increase in atmospheric 14C concentrations from the two largest cosmogenic events in 774 and 993 CE. The initiative named “COSMIC” is lead by Ulf Büntgen (Cambridge University), Lukas Wacker, and J. Diego Galván (Swiss Federal Research Institute WSL) and measured these two cosmogenic events in 44 of the world’s longest tree-ring chronologies. These events are now key marker years and a powerful dating tool. The study was published in Nature Communication and can be found here.

Tree Corps visits the WTRL

Community Forestry group and Tree Corps – a new program run out of the Holden Arboretum visited the Tree Ring Lab to learn a bit about tree-sampling and the information contained in the tree records.

Coring a white oak that is slated for removal – we learned a lot from the group. For example,  Volcano munching was a topic of conversation a concept we which were not aware.

More coring – Nick then took the group to the wood shop and lab.

Mounting the cores – we look forward to working with the group next year. The Tree Corp Program in its inaugural year seemed a major success – congratulations.

Concluding 2018 summer research in the Tree Ring Lab

Summer 2018 research in the Tree Ring Lab has come to a close. The group of five students worked on a variety of projects, learning about the climate and history of Ohio and Alaska, and the application of different dendrochronological techniques and statistical analyses. They also gained experience effectively conveying their research to others and writing official reports of their findings.
The summer research team on their last day working together (Left to right: Greg Wiles, Nick Wiesenberg, Victoria Race ’19, Juwan Shabazz ’19, Kendra Devereux ’21, Josh Charlton ’19, and Alexis Lanier ’20).
AMRE students with a sampled oak tree at Brown’s Lake Bog in Wooster, Ohio (Alexis Lanier ’20, Juwan Shabazz ’19, and Kendra Devereux ’21).
The AMRE team accomplished a lot during the eight weeks they were here on campus. Their research started with the principles of dendrochronology, when they learned how to count individual tree rings and measure their widths under the microscopes. From here, the team learned how to run this data in different programs like COFECHA and ARSTAN. This process allowed them to date many historical structures across Northeast Ohio such as Gingery Barn and Miller House and Barn. You can find a full list on the TRL’s reports page.
AMRE students with

https://woostergeologists.scotblogs.wooster.edu

Concluding 2018 summer research

Today is the official last day for AMRE researchers here at the Tree Ring Lab. The AMRE team has accomplished many projects these past 8 weeks.

AMRE students with a sampled oak tree at Brown’s Lake Bog in Wooster, Ohio (Alexis Lanier ’20, Juwan Shabazz ’19, and Kendra Devereux ’21).

Their research started with the principles of dendrochronology, when they learned how to count individual tree rings and measure their widths under the microscopes. From here, the team learned how to run this data in different programs like COFECHA and ARSTAN. This process allowed them to date many historical structures across Northeast Ohio such as Gingery Barn and Miller House and Barn. You can find a full list on our reports page.

AMRE students with Nick Wiesenberg collecting samples from historical structures at Sonnenberg Village in Kidron, Ohio.
Alexis and Kendra visiting one of the historical structures at Sonnenberg Village.

The AMRE students also learned how to take these chronologies and make hypotheses regarding past climate by uploading the data to Climate Explorer and running various correlations with other datasets.

We were fortunate enough to go out in the field and personally collect most of the data that we worked with this summer. These eventful trips included a lot of tree coring and required lots of bug spray. Some of the AMRE group’s favorites trips included Stebbin’s Gulch and Brown’s Lake Bog.

Stebbin’s Gulch at the Holden Arboretum (Left to right: Josh Charlton ’19, Juwan Shabazz ’19, Alexis Lanier ’20, Kendra Devereux ’21, and Dr. Wiles).
Juwan with the machete, ready to clear a path for the rest of the team at Brown’s Lake Bog.
Lining up to cross the moat at Brown’s Lake Bog after a weekend of strong thunderstorms.
Kendra Devereux with the sample bag at Barnes Preserve in Wayne County.
Josh Charlton ’19 coring a tree at Stebbin’s Gulch in the Holden Arboretum.

The other two summer researchers working in the Tree Ring Lab this summer, Victoria Race and Josh Charlton, have been working with tree ring data collected from Alaska. Their work focuses on the modeling of Columbia Glacier located in Prince William Sound, Alaska. They are currently working on an abstract to submit to the upcoming GSA conference this fall. Stay tuned for more information regarding their project!

AMRE students with Victoria Race ’19 and Arrow at Brown’s Lake Bog.

Special thanks to the National Science Foundation, the Sherman Fairchild Foundation and the AMRE program for helping to make this research possible. Enjoy the rest of your summer!

 

An Update on Stebbin’s Gulch at the Holden Arboretum

Summer researchers working in the Tree Ring Lab returned to Stebbin’s Gulch in late May to collect more chestnut oak samples. This increased replication helps us to strengthen our various hypotheses made from the interpretation of our findings.

Our views of the canopy.
Team members recording measurements and extracting a core from this living chestnut oak.
Kendra and Victoria looking at a giant burl on one of the sampled trees.
Team members coring an old chestnut oak along the gulch reaching high into the canopy.

This information is useful in mapping out land use changes in Northeast Ohio. The team identified an abrupt increase in ring width around 1840. They attributed this rise to decreased competition from logging which coincides with the time of most significant settlement in the area.

Read more about their conclusions in the official dendroclimatological report here.

Weblog authors are solely responsible for the content and accuracy of their weblogs, including opinions they express, and the College of Wooster disclaims any and all liability for that content, its accuracy, and opinions it may contain. Content is made available under the Creative Commons Attribution-Share Alike 3.0 United States License unless specified otherwise. Privacy Statement

Skip to toolbar